Posts Tagged ‘Rotational’

Rotational Moulding DIY

DIY rotomold machine built whilst studying in our 3rd year on BA Product design. The video takes you through the journey as we built and tested the machine. The machine was built at no cost from scrap materials and recycled parts. This was not part of our degree in any way just a process that we wanted to explore and learn for ourselves. Let us know what you think and if you have any questions we will be happy to answer!
Video Rating: 4 / 5

Injection Molds and Rotational Molds – Manufacturing For a Demanding Marketplace

Injection Molds and Rotational Molds – Manufacturing For a Demanding Marketplace

The world has become very dependent upon plastic products. From household items to industry and aerospace, plastic in its many formulations has transformed modern manufacturing and created conveniences and economies unimagined in the early decades of the 20th century.

Injection Molds

The injection molding industry took hold in 1946 when James Hendry built a screw injection molding machine. But, his technology was based on an earlier invention by John Wesley Hyatt who, in 1868 injected hot celluloid into a mold to make billiard balls. Hyatt’s method used a plunger to force the material inside a mold. Hendry’s improvement was revolutionary because it eliminated the plunger and replaced it with an auger-type action that better distributed material and facilitated the use of plastic inside molds.

Today’s injection molds use much the same process and produce a wide variety of products from car panels to outdoor furniture, small toys and tools. Injection molding is ubiquitous in manufacturing and uses many different materials from polymer plastics to aluminum, copper and other metals. The plastic bottles and kitchen implements people use in everyday life are products of the injection process.

Because the metal molds are generally expensive to produce, injection molding is most economically used when thousands of pieces are being manufactured. Molds are made of hardened steel or, more recently, aluminum which is less expensive.

The Injection Process

Described very simply, molten plastic is injected into the mold under high heat and pressure. The goal is to have the molten plastic material evenly flow to all parts of the mold, creating an exact, consistent, solid plastic replica of the mold cavity. After a brief cooling cycle, the mold or tooling mechanically ejects the plastic part which then moves on through the manufacturing process. In the injection molding industry, this is a completely automated process that’s very fast and extremely efficient.

Rotational Molding

Rotational molding is yet another method of producing multiple products, most often made with a variety of plastic powders. This process is usually used in making hollow products such as traffic cones, canoes, kayaks, bicycle helmets and giant tanks used for water or chemical storage.

Like Injection molding, rotational molding had its roots in the 1940s. But it was not until the technology was more sophisticated and new polymer and plastic formulations became available that the rotational process became a mainstream manufacturing method.

Rotational Process

The two processes are quite different. Let’s consider, for example, a 300 gallon water storage tank made of polyethylene. Picture a master mold made of aluminum or steel. The plastics manufacturer pours poly resin powder into the mold that is fitted inside an oven. Once sealed, the mold is mechanically turned on at least three axes, moving much like a gyroscope. At the same time, the oven is raised to an appropriate temperature and the polymer – or other material – tumbles inside and slowly coats the inner walls of the mold, melting as it rotates.

Once the optimal temperature is reached, the mold is cooled. As the temperature of the mold itself falls, the product on the inside shrinks away from the inner walls and is easily removed. This is not always the case with injection molds that are often more difficult to successfully remove. The shrinking action of rotational molding is particularly desirable when the product is very large and awkward to handle.

Rotational molding is also more economical for some products because less material is used. In addition, the polymer that is left over from one mold can be used in another. The method itself is more streamlined than injection molding, which requires more interlocking parts.

Materials Improve and Expand

Most products made with the rotational molding method are from the polyethylene family. Other materials include nylons, polypropylene and PVC plastics. Some manufacturers have developed formulas that integrate the use of natural materials such as sand and chips of stone to make products.

Plastic and resin products are now an integral part of everyday life and supply us with items as tiny as paper clips and as big as storage tanks. As the industry developed, so too has environmental awareness about the safety and use of these petrochemical-based products. Today, materials can meet the specifications of FDA requirements, and other health and safety related regulations. Producers are also cooperating to create products that can be recycled.

Visit us for additional information on rotational molding and rotomolding equipment.